1,3-πενταδιένιο
Το 1,3-πενταδιένιο[1] (αγγλικά: 1,3-pentadiene) είναι οργανική χημική ένωση, σε δύο (2) γεωμετρικά ισομερή, που περιέχει άνθρακα και υδρογόνο, με μοριακό τύπο C5H8 και ημισυντακτικό τύπο CH3CH=CHCH=CH2. Ανήκει στην ομόλογη σειρά των αλκαδιενίων και στην κατηγορία των διενίων.
1,3-πενταδιένιο | |||
---|---|---|---|
Γενικά | |||
Όνομα IUPAC | 1,3-πενταδιένιο | ||
Άλλες ονομασίες | Πιπερυλένιο Μεθυλοβουταδιένιο 1-μεθυλο-1,3-βουταδιένιο | ||
Χημικά αναγνωριστικά | |||
Χημικός τύπος | C5H8 | ||
Μοριακή μάζα | 68,117 ± 0,0046 amu | ||
Σύντομος συντακτικός τύπος |
CH3CH=CHCH=CH2 | ||
Συντομογραφίες | MeCH=CHVi | ||
Αριθμός CAS | 504-60-9 2004-70-8 (trans-) 1574-41-0(cis-) | ||
SMILES | C/C=C/C=C | ||
InChI | 1S/C5H8/c1-3-5-4-2/h3-5H,1H2,2H3/b5-4+ | ||
Αριθμός EINECS | 207-995-2 | ||
PubChem CID | 62204 | ||
ChemSpider ID | 56020 | ||
Ισομέρεια | |||
Ισομερή θέσης | 25 (εκτός καρβενίων) | ||
Γεωμετρικά ισομερή | 2 | ||
Φυσικές ιδιότητες | |||
Σημείο τήξης | -87°C(trans-) -141°C(cis-) | ||
Σημείο βρασμού | 42°C(trans-) 44°C(cis-) | ||
Πυκνότητα | 683 kg/m³(trans-) 691 kg/m³(cis-) | ||
Διαλυτότητα σε άλλους διαλύτες |
Αναμείξιμο σε Αιθανόλη Διαθυλαιθέρα Προπανόνη Βενζόλιο | ||
Δείκτης διάθλασης , nD |
1,430 (20°C, trans-) 1,437 (20°C, cis-) | ||
Εμφάνιση | Διαφανές, άχρωμο υγρό | ||
Χημικές ιδιότητες | |||
Επικινδυνότητα | |||
Εκτός αν σημειώνεται διαφορετικά, τα δεδομένα αφορούν υλικά υπό κανονικές συνθήκες περιβάλλοντος (25°C, 100 kPa). |
Το χημικά καθαρό 1,3-πενταδιένιο, στις «κανονικές συνθήκες περιβάλλοντος», δηλαδή σε θερμοκρασία 25 °C και υπό πίεση 1 atm, είναι άχρωμο[2] και εξαιρετικά εύφλεκτο υγρό.
Αναφέρεται, επίσης, ως πιπερυλένιο, επειδή είναι παράγωγο της πιπερίνης.[3]
Δομή
ΕπεξεργασίαΗ εναλλαγή δύο (2) διπλών και ενός (1) ενδιάμεσου απλού δεσμού άνθρακα - άνθρακα σχηματίζουν ένα συζευγμένο σύστημα.
Τα τέσσερα (4) συνολικά άτομα άνθρακα, που σχηματίουν το συζευγμένο σύστημα, μαζί με συνολικά πέντε (5) άτομα υδρογόνου και το άτομο άνθρακα του μεθυλίου, είναι όλα συνεπίπεδα. Τα άτομα άνθρακα #1 - #4 βρίσκονται σε sp² υβριδισμό, ενώ το #5 σε sp³. Οι γωνίες στο συζευγμένο σύστημα είναι περί τις 120°. Η περιστροφή των δεσμών C=C απαιτεί (σχετικά) υψηλή ποσότητα ενέργειας, γιατί απαιτεί την (προσωρινή) διάσπαση του π-δεσμού. Η περιοχή των διπλών δεσμών χαρακτηρίζεται από (σχετικά) υψηλή ηλεκτρονιακή πυκνότητα, που επομένως είναι ευάλωτη σε επιδράσεις ηλεκτρονιόφιλων. Πολλές αντιδράσεις του 1,3-πενταδιενίου καταλύνται από διάφορα μέταλλα μετάπτωσης, που σχηματίζουν προσωρινά σύμπλοκα με τα π και π* τροχιακά του 1,3-πενταδιενίου.
Δεσμοί[4] | ||||
Δεσμοί | τύπος δεσμού | ηλεκτρονική δομή | Μήκος δεσμού | Ιονισμός |
---|---|---|---|---|
C#5-H | σ | 2sp3-1s | 109 pm | 3% C- H+ |
C#1-H
C#2-H C#3-H C#4-H |
σ | 2sp2-1s | 108,7 pm | 3% C- H+ |
C#5-C#4 | σ | 2sp3-2sp2 | 151 pm | |
C#1=C#2 | σ
π |
2sp2-2sp2
2p-2p |
134 pm | |
C#3=C#4 | σ
π |
2sp2-2sp2
2p-2p |
134 pm | |
Κατανομή φορτίων σε ουδέτερο μόριο | ||||
C#5 | -0,09 | |||
C#1 | -0,06 | |||
C#2
C#3 C#4 |
-0,03 | |||
H | +0,03 |
Παραγωγή
ΕπεξεργασίαΣυνήθως, λαμβάνεται ως παραπροϊόν της παραγωγής αιθυλενίου από το αργό πετρέλαιο, από την καύση βιομάζας, από επεξεργασία αποβλήτων, και από καυσαέρια καύσης.
Εναλλακτικές μέθοδοι
ΕπεξεργασίαΜε ανοικοδόμιση ανθρακικής αλυσίδας
ΕπεξεργασίαΑντίδραση ζεύγους 1-αλοπροπενίου (CH2CH=CHX) - βινυλολιθίου (CH2=CHLi) ή 1-προπενυλολιθίου (CH2CH=CHLi) - βινυλαλογονιδίου (CH2=CHX):
ἠ
Με αφυδάτωση διόλης
ΕπεξεργασίαΜε ενδομοριακή αφυδάτωση (δύο ισοδυνάμων νερού, H2O) 1,4-πεντανοδιόλης παράγεται (κυρίως) 1,3-πενταδιένιο. Η αντίδραση ευνοείται σε σχετικά υψηηλές θερμοκρασίες, >150 °C[5]:
Με απόσπαση υδραλογόνου
ΕπεξεργασίαΜε απόσπαση δύο ισοδυνάμων υδραλογόνου (HX) από 1,4-διαλοπεντάνιο παράγεται (κυρίως) 1,3-πενταδιένιο[6]:
Με απόσπαση αλογόνου
ΕπεξεργασίαΜε απόσπαση δύο (2) ισοδυνάμων αλογόνου (X2) από 1,2,3,4-τετραλοπεντάνιο παράγεται 1,3-πενταδιένιο[7]:
Χημικές ιδιότητες και παράγωγα
Επεξεργασία- Εμφανίζει όλες τις χαρακτηριστικές ιδιότητες των ακόρεστων υδρογονανθράκων.
- Επειδή έχει δύο (2) διπλούς δεσμούς, υπάρχει η δυνατότητα για δύο (2) αντιδράσεις προσθήκης. Η προσθήκη που γίνεται πρώτη είναι (συνήθως) η 1,4-. αλλά, με διαφοροποίηση των συνθηκών, είναι δυνατό να προηγηθεί η 1,2- ή και η 3,4- προσθήκη. Για λόγους απλοποίησης παρακάτω εφαρμόζεται μόνο η πιο συνηθισμένη 1,4-προσθήκη.
Καύση
Επεξεργασία
Οζονόλυση
ΕπεξεργασίαΜε επίδραση όζοντος (O3, οζονόλυση) σε 1,3-πενταδιένιο, παράγεται ασταθές οζονίδιο που τελικά διασπάται σε μεθανάλη, αιθανάλη και γλυοξάλη[8]:
Διυδροξυλίωση
Επεξεργασία- Η διυδροξυλίωση 1,2-πενταδιενίου, αντιστοιχεί σε προσθήκη υπεροξειδίου του υδρογόνου (H2O2)[9]:
1. Η επίδραση αραιού διαλύματος υπερμαγγανικού καλίου (KMnO4) παράγει 3-πεντενο-1,4-διόλη:
2. Επίδραση καρβοξυλικού οξέος και υπεροξείδιου του υδρογόνου (Η2Ο2) παράγει 3-πεντενο-1,4-διόλη:
3. Η μέθοδος Σάρπλες (Sharpless) παράγει 3-πεντενο-1,4-διόλη:
4. Η μέθοδος Γούντγαρντ (Woodward) παράγει 3-πεντενο-1,4-διόλη:
5. Υπάρχει ακόμη δυνατότητα για 1,5-διυδροξυλίωση με επίδραση αλδευδών ή κετονών σε 1,3-πενταδιένιο, παρουσία νερού (H2O). Αντίδραση Πρινς (Prins). Π.χ. με μεθανάλη παράγεται 3-εξενενο-1,5-διόλη:
Επίδραση πυκνού υπερμαγγανικού καλίου
ΕπεξεργασίαΜε επίδραση πυκνού διαλύματος υπερμαγγανικού καλίου (KMnO4) παράγεται τελικά αιθανικό οξύ και διοξείδιο του άνθρακα[10]:
- Ενδιάμεσα παράγονται μεθανικό οξύ και οξαλικό οξύ :
Ενυδάτωση
Επεξεργασία1. Επίδραση θειικού οξέος (H2SO4) και στη συνέχεια νερού (H2O, ενυδάτωση). Παράγεται 3-πεντεν-2-όλη[11]:
2. Υδροβορίωση και στη συνέχεια επίδραση με υπεροξείδιο του υδρογόνου (Η2Ο2). Παράγεται τρι(2-πεντενυλο)βοράνιο και στη συνέχεια 2-πεντεν-1-όλη[12]:
- Προσθήκη διβορανίου (B2H4) έχει το ίδιο αποτέλεσμα.
3. Υπάρχει ακόμη η δυνατότητα αλλυλικής υδροξυλίωσης κατά Πρινς (Prins) με επίδραση αλδευδών ή κετονών σε προπαδιένιο απουσία νερού. Π.χ. με μεθανάλη προκύπτει 2,4-εξαδιεν-1-όλη:
Προσθήκη υποαλογονώδους οξέως
ΕπεξεργασίαΜε επίδραση (προσθήκη) υποαλογονώδους οξέος (HOX) σε 1,3-πενταδιένιο παράγεται 5-αλο-3-πεντεν-2-όλη[13]:
- Η παραπάνω αντίδραση ισχύει όταν X: Cl, Br και I. Αν X = F, παράγεται 4-φθορο-2-πεντεν-1-όλη:
Καταλυτική υδρογόνωση
ΕπεξεργασίαΜε καταλυτική υδρογόνωση 1,3-πενταδιενίου σχηματίζεται αρχικά 2-πεντένιο και στη συνέχεια (με περίσσεια υδρογόνου) πεντάνιο[14]:
Αλογόνωση
Επεξεργασία1. Με προσθήκη αλογόνου (X2, αλογόνωση) σε 1,3-πενταδιένιο έχουμε προσθήκη στους διπλούς δεσμούς. Παράγεται αρχικά 1,4-διαλο-2-πεντένιο και στη συνέχεια, με περίσσεια αλογόνου, 1,2,3,4-τετραλοπεντάνιο. Π.χ.[15]:
2. Υποκατάσταση σε αλλυλική θέση, δηλαδή σε α θέση ως προς τους διπλούς δεσμούς. Παράγεται 5-αλο-1,3-πενταδιένιο: Π.χ.:
- Η αλλυλική υποκατάσταση ευνοείται με ορισμένα ειδικά αντιδραστήρια αλογόνωσης ή σε υψηλές θερμοκρασίες.
Υδραλογόνωση
ΕπεξεργασίαΜε προσθήκη υδραλογόνων (HX, υδραλογόνωση) σε 1,3-πενταδιένιο παράγεται αρχικά 2-αλο-3-πεντένιο και στη συνέχεια, με περίσσεια υδραλογόνου, (κυρίως) 2,3-διαλοπεντάνιο, αλλά συμπαράγεται σημαντική ποσότητα 2,4-διαλοπεντανίου:[16]
Υδροκυάνωση
ΕπεξεργασίαΜε προσθήκη υδροκυανίου (HCN, υδροκυάνωση) σε 1,3-πενταδιένιο παράγεται 2-μεθυλο-3-βουτενoνιτρίλιο:
Καταλυτική αμμωνίωση
Επεξεργασία1. Προσθήκη αμμωνίας (NH3). Παράγεται αρχικά 3-πεντεν-2-αμίνη:
Εφαρμογές
ΕπεξεργασίαΤο πιπερυλένιο χρησιμοποιείται ως μονομερές για την παραγωγή πλαστικών, κολλών και ρητινών.[17]
Περιβάλλον
ΕπεξεργασίαΜετά την απελευθέρωσή του στο υδάτινο περιβάλλον αναμένεται να προσροφά αιωρούμενα σωματίδια (SPM) , με βάση την εκτιμώμενη τιμή KOC.
Δείτε επίσης
ΕπεξεργασίαΠηγές
Επεξεργασία- Speight J. G., “Chemical and Process Design Handbook”, McGraw-Hill, 2002.
- Γ. Βάρβογλη, Ν. Αλεξάνδρου, Οργανική Χημεία, Αθήνα 1972
- Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991
- SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999
- Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982
Αναφορές και σημειώσεις
Επεξεργασία- ↑ Για εναλλακτικές ονομασίες δείτε τον πίνακα πληροφοριών.
- ↑ «Αρχειοθετημένο αντίγραφο». Αρχειοθετήθηκε από το πρωτότυπο στις 12 Αυγούστου 2011. Ανακτήθηκε στις 20 Σεπτεμβρίου 2017.
- ↑ C. Schotten: Beitrag zur Kenntniss des Piperidins. In: Berichte der deutschen chemischen Gesellschaft 15, 1882, S. 421–427, doi:10.1002/cber.18820150186.
- ↑ Τα δεδομένα προέρχονται εν μέρει από το «Table of periodic properties of thw Ellements», Sagrent-Welch Scientidic Company και Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, Σελ. 34.
- ↑ Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.153, §6.3.3.
- ↑ Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.153, §6.3.1α.
- ↑ Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.153, §6.3.1β.
- ↑ Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 157, §6.8.10.
- ↑ Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 157, §6.8.9.
- ↑ Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 158, §6.9.8.
- ↑ Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 156, §6.8.3.
- ↑ Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 156, §6.8.5.
- ↑ Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 156, §6.8.4.
- ↑ Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 156, §6.8.6.
- ↑ Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 156, §6.8.2.
- ↑ Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 156, §6.8.1.
- ↑ Piperylene Αρχειοθετήθηκε 2009-05-13 στο Wayback Machine. at Shell Chemicals. Retrieved 2009-05-19.