Πολλαπλασιαστικός αντίστροφος
Στα μαθηματικά, ο πολλαπλασιαστικός αντίστροφος ενός αριθμού , συμβολίζεται με ή , και είναι ένας αριθμός που όταν πολλαπλασιαστεί επί δίνει αποτέλεσμα το ουδέτερο στοιχείο του πολλαπλασιασμού, δηλαδή τη μονάδα, :[1]:21
- .
Ο πολλαπλασιαστικός αντίστροφος είναι μία ειδική περίπτωση του αντιστρόφου στοιχείου ενός συνόλου ως προς μία δυαδική πράξη . Σε έναν δακτύλιο (όπου υπάρχουν δύο πράξεις), ο πολλαπλασιαστικός αντίστροφος ενός στοιχείου αναφέρεται στον αντίστροφο ως προς την πράξη , ενώ ο αντίθετος αναφέρεται στον αντίστροφο ως προς την πράξη .[2]:173[3]:6
Παραδείγματα
Επεξεργασία- Στους πραγματικούς αριθμούς, κάθε αριθμός εκτός από το μηδέν έχει αντίστροφο. Για παράδειγμα, για ο αντίστροφός του είναι καθώς .
- Επίσης, στους μιγαδικούς αριθμούς, κάθε αριθμός εκτός από το μηδέν έχει αντίστροφο. Για παράδειγμα, για ο αντίστροφος είναι καθώς .[4]:23[5]:5
- Στην αριθμητική υπολοίπων, στο με τον πολλαπλασιασμό με υπόλοιπο , ένας αριθμός έχει πολλαπλασιαστικό αντίστροφο ανν .[6]:1[7]:19 Για παράδειγμα, για , ο έχει αντίστροφο τον καθώς , ενώ ο δεν έχει αντίστροφο.
Δείτε επίσης
ΕπεξεργασίαΠαραπομπές
Επεξεργασία- ↑ Αλβανός, Παρασκευάς· Πουλάκης, Δημήτριος (2021). Επανάληψη στην Θεωρία Αριθμών: Συνοπτική θεωρία, Μεθοδολογία, Ασκήσεις. Αθήνα: ΣΕΑΒ. ISBN 978-618-85370-3-3.
- ↑ Fraleigh, John B. (2013). A first course in abstract algebra (7η έκδοση). Harlow, Essex: Pearson Education. ISBN 9781292037592.
- ↑ Τουμπης, Σ.· Γκιτζενης, Σ. (2015). Λογισμός συναρτήσεων μιας μεταβλητής. Αθήνα: ΣΕΑΒ. ISBN 978-960-603-183-0.
- ↑ Μπεληγιαννης, Α. (2015). Μια εισαγωγή στη βασική άλγεβρα. Αθήνα: ΣΕΑΒ. ISBN 978-960-603-262-2.
- ↑ Σταματιάδης, Σ. (2022). «Εφαρμοσμένα Μαθηματικά Σημειώσεις Διαλέξεων» (PDF). Τμήμα Επιστήμης και Τεχνολογίας Υλικών, Πανεπιστήμιο Κρήτης. Αρχειοθετήθηκε από το πρωτότυπο (PDF) στις 26 Σεπτεμβρίου 2022. Ανακτήθηκε στις 17 Αυγούστου 2022.
- ↑ Ζάχος, Σ.· Παγουρτζής, Ά. «Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία» (PDF). Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών, Εθνικό Μετσόβιο Πολυτεχνείο. Ανακτήθηκε στις 17 Αυγούστου 2022.
- ↑ Στεφανίδης, Γεώργιος. «Ενότητα 11: Αριθμητική υπολοίπων-Δυνάμεις» (PDF). Τμήμα Εφαρμοσμένης Πληροφορικής. Ανακτήθηκε στις 17 Αυγούστου 2022.