Εικόνα σε υψηλότερη ανάλυση (2.000 × 2.000 εικονοστοιχεία, μέγεθος αρχείου: 619 KB, τύπος MIME: image/png)

Σύνοψη

Περιγραφή
English: Perturbated Rabbit Julia set[1]. Made with DEM/J[2]. where:
  • is center of period 3 component
Ημερομηνία
Πηγή own work with help of xenodreambuie[3]
Δημιουργός Adam majewski
άλλες εκδόσεις

Αδειοδότηση

Εγώ, ο κάτοχος των πνευματικών δικαιωμάτων αυτού του έργου, το δημοσιεύω δια του παρόντος υπό την εξής άδεια χρήσης:
w:el:Creative Commons
αναφορά προέλευσης παρόμοια διανομή
Είστε ελεύθερος:
  • να μοιραστείτε – να αντιγράψετε, διανέμετε και να μεταδώσετε το έργο
  • να διασκευάσετε – να τροποποιήσετε το έργο
Υπό τις ακόλουθες προϋποθέσεις:
  • αναφορά προέλευσης – Θα πρέπει να κάνετε κατάλληλη αναφορά, να παρέχετε σύνδεσμο για την άδεια και να επισημάνετε εάν έγιναν αλλαγές. Μπορείτε να το κάνετε με οποιοδήποτε αιτιολογήσιμο λόγο, χωρίς όμως να εννοείται με οποιονδήποτε τρόπο ότι εγκρίνουν εσάς ή τη χρήση του έργου από εσάς.
  • παρόμοια διανομή – Εάν αλλάξετε, τροποποιήσετε ή δημιουργήσετε πάνω στο έργο αυτό, μπορείτε να διανείμετε αυτό που θα προκύψει μόνο υπό τους όρους της ίδιας ή συμβατής άδειας με το πρωτότυπο.

C src code

/*

  Adam Majewski
  adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero 
  
  
  console program in c programing language 
  
  ====================

Rabbits, Basilicas, and Other Julia Sets Wrapped in
Sierpinski CarpetsPaul BlanchardRobert L. DevaneyRobert L. DevaneyShow all 6 authorsElizabeth D. Russell



1.4. A magnification of the doubly inverted rabbit. Note that there are some
“quadruply” inverted copies of the rabbit surrounding this set. These bound regions
that contain critical poi
----------------------------------------------

lambda = 0.0013 − 0.002i

maxima

Maxima 5.41.0 http://maxima.sourceforge.net

(%i3) f:z^2+c +b/(z^2);
                                 
(%i4) diff(f,z,1);
                             
(%o4)                       2z -2*b/z^3
(%i5) 

  
  
  
  ==============================================
  
  
  Structure of a program or how to analyze the program 
  
  
  ============== Image X ========================
  
  DrawImageOfX -> DrawPointOfX -> ComputeColorOfX 
  
  first 2 functions are identical for every X
  check only last function =  ComputeColorOfX
  which computes color of one pixel !
  
  

   
  ==========================================

  
  ---------------------------------
  indent d.c 
  default is gnu style 
  -------------------



  c console progam 
  
	export  OMP_DISPLAY_ENV="TRUE"	
  	gcc d.c -lm -Wall -march=native -fopenmp
  	time ./a.out > b.txt


  gcc d.c -lm -Wall -march=native -fopenmp


  time ./a.out

  time ./a.out >a.txt
  
  
  convert -limit memory 32 -limit map 64 60000.1.pgm -resize 2000x2000 61.png


  ----------------------
  
 real	0m19,809s
user	2m26,763s
sys	0m0,161s


  

*/

#include <stdio.h>
#include <stdlib.h>		// malloc
#include <string.h>		// strcat
#include <math.h>		// M_PI; needs -lm also
#include <complex.h>
#include <omp.h>		// OpenMP

/* --------------------------------- global variables and consts ------------------------------------------------------------ */



// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1 
//unsigned int ix, iy; // var
static unsigned int ixMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int ixMax;	//
static unsigned int iWidth;	// horizontal dimension of array

static unsigned int iyMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int iyMax;	//

static unsigned int iHeight = 20050;	//  
// The size of array has to be a positive constant integer 
static unsigned int iSize;	// = iWidth*iHeight; 

// memmory 1D array 
unsigned char *data;
unsigned char *edge;
unsigned char *edge2;

// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax;	// = i2Dsize-1  = 
// The size of array has to be a positive constant integer 
// unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array


static const double ZxMin = -1.35;	//-0.05;
static const double ZxMax =  1.35;	//0.75;
static const double ZyMin = -1.35;	//-0.1;
static const double ZyMax =  1.35;	//0.7;
static double PixelWidth;	// =(ZxMax-ZxMin)/ixMax;
static double PixelHeight;	// =(ZyMax-ZyMin)/iyMax;
static double ratio;


// complex numbers of parametr plane 
double complex c;		// parameter of function fc(z)=z^2 + c
double complex lambda;


int Period = 2;


static unsigned long int iterMax = 1000000;	//iHeight*100;

static double ER = 200.0;		// EscapeRadius for bailout test 
double EscapeRadius=1000000; // = ER big !!!!
// SAC/J
double lnER; // ln(ER)
int i_skip = 2; // exclude (i_skip+1) elements from average
unsigned char s = 7; // stripe density

double BoundaryWidth = 3.0; // % of image width  
double distanceMax; //distanceMax = BoundaryWidth*PixelWidth;




/* colors = shades of gray from 0 to 255 */
unsigned char iColorOfExterior = 250;
unsigned char iColorOfInterior = 200;
unsigned char iColorOfInterior1 = 210;
unsigned char iColorOfInterior2 = 180;
unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 30;





/* ------------------------------------------ functions -------------------------------------------------------------*/





//------------------complex numbers -----------------------------------------------------





// from screen to world coordinate ; linear mapping
// uses global cons
double GiveZx ( int ix)
{
  return (ZxMin + ix * PixelWidth);
}

// uses globaal cons
double GiveZy (int iy) {
  return (ZyMax - iy * PixelHeight);
}				// reverse y axis


complex double GiveZ( int ix, int iy){
  double Zx = GiveZx(ix);
  double Zy = GiveZy(iy);
	
  return Zx + Zy*I;
	
	


}




// ****************** DYNAMICS = trap tests ( target sets) ****************************



// bailout test
// z escapes when 
// abs(z)> ER or cabs2(z)> ER2 
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#Boolean_Escape_time

int Escapes(complex double z){
 // here target set (trap) is the exterior  circle with radsius = ER ( EscapeRadius) 
  // with ceter = origin z= 0
  // on the Riemann sphere it is a circle with point at infinity as a center  
   
  if (cabs(z)>ER) return 1;
  return 0;
}








/* -----------  array functions = drawing -------------- */

/* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */
unsigned int Give_i (unsigned int ix, unsigned int iy)
{
  return ix + iy * iWidth;
}


// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************

// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
  /* sobel filter */
  unsigned char G, Gh, Gv; 
  // boundaries are in D  array ( global var )
 
  // clear D array
  memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);
 
  // printf(" find boundaries in S array using  Sobel filter\n");   
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
  for(iY=1;iY<iyMax-1;++iY){ 
    for(iX=1;iX<ixMax-1;++iX){ 
      Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
      Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
      G = sqrt(Gh*Gh + Gv*Gv);
      i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
      if (G==0) {D[i]=255;} /* background */
      else {D[i]=0;}  /* boundary */
    }
  }
 
   
 
  return 0;
}



// copy from Source to Destination
int CopyBoundaries(unsigned char S[],  unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
 
 
  //printf("copy boundaries from S array to D array \n");
  for(iY=1;iY<iyMax-1;++iY)
    for(iX=1;iX<ixMax-1;++iX)
      {i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
 
 
 
  return 0;
}





// ***************************************************************************************************************************
// ************************** DEM/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfDEMJ(complex double z){
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#DEM.2FJ


  
  int nMax = iterMax;
  complex double dz = 1.0; //  is first derivative with respect to z.
  double distance;
  double cabsz;
  complex double z2;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	cabsz = cabs(z);
    	if (cabsz > 1e60 || cabs(dz)> 1e60) break; // big values 
    	//if (cabsz< PixelWidth) return iColorOfInterior; // falls into finite attractor = interior
  
  	z2 = z*z;
	dz = dz*(2*z-2*lambda/(z2*z)) ; // https://fractalforums.org/fractal-mathematics-and-new-theories/28/perturbated-julia-set/3397/;topicseen
	z = z2 +c +lambda/z2 ; /* forward iteration : perturbated complex quadratic polynomial */ 
  }
  
  
  distance = 2.0 * cabsz* log(cabsz)/ cabs(dz);
  if (distance <distanceMax) return iColorOfBoundary; // distanceMax = BoundaryWidth*PixelWidth;
  // else
  
  return iColorOfExterior;

 
}



// plots raster point (ix,iy) 
int DrawPointOfDEMJ (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfDEMJ(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfDEMJ (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		//printf (" %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfDEMJ(A, ix, iy);	//  
  }

  return 0;
}




// ***************************************************************************************************************************
// ************************** Unknown: boundary and slow dynamics *****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfUnknown(complex double z){



  
  int nMax = 20; // very low value
  
  double cabsz;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	cabsz = cabs(z);
    	if (cabsz > 10000000000*ER )  return iColorOfExterior; // big values
    	if (cabsz < (PixelWidth/100)) return iColorOfInterior; // falls into finite attractor = interior
  			
    
    z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  
  
  
  //printf("found \n");
  return iColorOfUnknown;

 
}



// plots raster point (ix,iy) 
int DrawPointOfUnknown (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfUnknown(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfUnknown (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		//printf (" %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfUnknown(A, ix, iy);	//  
  }

  return 0;
}



// ***************************************************************************************************************************
// ************************** BET/J = Binary Escape Tima*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfBET(complex double z){

 int nMax = 255;
  double cabsz;
  unsigned char iColor;
  //double b = 0.001;
  complex double z2;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	cabsz = cabs(z);
    	if (cabsz > ER) {return 255;}; // escaping
    	//if (cabsz< PixelWidth) break; // fails into finite attractor = interior
  			
   	z2 = z*z;
     	z = z2 +c  +lambda/z2; /* forward iteration : complex quadratic polynomial */ 
  }
  
  
  iColor = 0; // 
  
  
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfBET (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfBET(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfBET (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf (" %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfBET(A, ix, iy);	//  
  }

  return 0;
}





// ***************************************************************************************************************************
// ************************** LSM/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfLSM(complex double z){

 int nMax = 255;
  double cabsz;
  unsigned char iColor;
  //double b = 0.001;
  complex double z2;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	cabsz = cabs(z);
    	if (cabsz > ER) break; // esacping
    	if (cabsz< PixelWidth) break; // fails into finite attractor = interior
  			
   	z2 = z*z;
     	z = z2 +c  + lambda/z2; /* forward iteration : complex quadratic polynomial */ 
  }
  
  
  iColor = 255 - 255.0 * ((double) n)/20; // nMax or lower walues in denominator
  
  
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfLSM (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfLSM(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfLSM (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf (" %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfLSM(A, ix, iy);	//  
  }

  return 0;
}




// ***************************************************************************************************************************
// ************************** binary decomposition BD/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfBD(complex double z){

 int nMax = 255;
  double cabsz;
  unsigned char iColor;
  complex double z2;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	cabsz = cabs(z);
    	if (cabsz > ER) break; // esacping
    	if (cabsz< PixelWidth) break; // fails into finite attractor = interior
  			
   	z2 = z*z;
     	z = z2 +c  + lambda/z2; /* forward iteration : complex quadratic polynomial */ 

     	//z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  if (creal(z)>0.0) 
  	iColor = 255; 
  	else iColor = 0;
  
  
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfBD (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfBD(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfBD (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf (" %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfBD(A, ix, iy);	//  
  }

  return 0;
}





// ***************************************************************************************************************************
// ************************** modified binary decomposition BD/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfMBD(complex double z){
// const number of iterations
 int nMax = 7;
  //double cabsz;
  unsigned char iColor;
  complex double z2;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	//cabsz = cabs(z);
    	//if (cabsz > ER) break; // esacping
    	//if (cabsz< PixelWidth) break; // falls into finite attractor = interior
  			
   	z2 = z*z;
     	z = z2 +c  + lambda/z2; /* forward iteration : complex quadratic polynomial */ 

     	//z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  if (cabs(z) > 2.0)
  	{ // exterior
  		if (creal(z)>0.0) 
  			iColor = 255; 
  			else iColor = 0;
  	}
  	else iColor = iColorOfInterior;
  	
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfMBD (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfMBD(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOMfBD (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf (" %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfMBD(A, ix, iy);	//  
  }

  return 0;
}




// ***********************************************************************************************
//*************************************** SAC/J **************************************************
// *****************************************************************************************
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/stripeAC
// SAC = Stripe Average Coloring

//

// the addend function
// input : complex number z
// output : double number t 
double Give_t(double complex z){

  return 0.5+0.5*sin(s*carg(z));

}

/*
  input :
  - complex number
  - intege
  output = average
 
*/
double Give_Arg(double complex z , int iMax)
{
  int i=0; // iteration 
   
   
  //double complex Z= 0.0; // initial value for iteration Z0
  double A = 0.0; // A(n)
  double prevA = 0.0; // A(n-1)
  double R; // =radius = cabs(Z)
  double d; // smooth iteration count
  double complex dz = 1.0; // first derivative with respect to z
  double de; // Distance Estimation from DEM/J  
   
    
  // iteration = computing the orbit
  for(i=0;i<iMax;i++)
    { 
    
      dz = 2.0 * z * dz ; 
      z = z*z + c; // https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/qpolynomials
      
      if (i>i_skip) A += Give_t(z); // 
      
      R = cabs(z);
      // if(R > EscapeRadius) break; // exterior of M set
  	if (R > 1e60 || cabs(dz)> 1e60) break; // prevent NAN 	 	
      prevA = A; // save value for interpolation
        
    } // for(i=0
   
   
  if (i == iMax) 
    A = -1.0; // interior 
  else { // exterior
    de = 2 * R * log(R) / cabs(dz);
    if (de < distanceMax) A = FP_ZERO; //  boundary
    else {
      // computing interpolated average
      A /= (i - i_skip) ; // A(n)
      prevA /= (i - i_skip - 1) ; // A(n-1) 
      // smooth iteration count
      d = i + 1 + log(lnER/log(R))/M_LN2;
      d = d - (int)d; // only fractional part = interpolation coefficient
      // linear interpolation
      A = d*A + (1.0-d)*prevA;
     }   
  }
    
  return A;  
}
 
 
 
 
 
unsigned char ComputeColorOfSAC(complex double z){

  unsigned char iColor;
  double arg;
  
   
   
  	arg = Give_Arg( z, 2500); //   N in wiki 
	
   	// color is proportional to arg 
	if (arg < 0.0)
           
		iColor = 0;  // interior                        
    
		else //  
			{if (arg == FP_ZERO) 
     				iColor = 255; // boundary     
        			else iColor = (unsigned char) (255 - 255*arg );// exterior
      			}
      
    
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfSAC (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfSAC(z);
  A[i] = iColor ;		//   
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOMfSAC (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf ("SAC/J :  %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfSAC(A, ix, iy);	//  
  }

  return 0;
}



 
 
 
 
 
 
 
 
 
 
 
 
 
 








// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************

int SaveArray2PGMFile( unsigned char A[], double k, char* comment )
{
  
  FILE * fp;
  const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ;  it is 8 bit color file */
  char name [100]; /* name of file */
  snprintf(name, sizeof name, "%.1f", k); /*  */
  char *filename =strncat(name,".pgm", 4);
  
  
  
  // save image to the pgm file 
  fp= fopen(filename,"wb"); // create new file,give it a name and open it in binary mode 
  fprintf(fp,"P5\n # %s\n %u %u\n %u\n", comment, iWidth, iHeight, MaxColorComponentValue);  // write header to the file
  fwrite(A,iSize,1,fp);  // write array with image data bytes to the file in one step 
  fclose(fp); 
  
  // info 
  printf("File %s saved ", filename);
  if (comment == NULL || strlen(comment) ==0)  
    printf("\n");
  else printf (". Comment = %s \n", comment); 

  return 0;
}







int PrintInfoAboutProgam()
{

  
  // display info messages
  printf ("Numerical approximation of Julia set for fc(z)= z^2 + c \n");
  //printf ("iPeriodParent = %d \n", iPeriodParent);
  //printf ("iPeriodOfChild  = %d \n", iPeriodChild);
  printf ("parameter c = ( %.16f ; %.16f ) \n", creal(c), cimag(c));
  
  printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
  printf ("PixelWidth = %f \n", PixelWidth);
  
  printf("for DEM/J \n");
  if ( distanceMax<0.0 || distanceMax > ER ) printf("bad distanceMax\n");
	printf("Max distance from exterior to the boundary =  distanceMax = %.16f = %f pixels\n",  distanceMax, BoundaryWidth); 
  
  // image corners in world coordinate
  // center and radius
  // center and zoom
  // GradientRepetition
  printf ("Maximal number of iterations = iterMax = %ld \n", iterMax);
  printf ("ratio of image  = %f ; it should be 1.000 ...\n", ratio);
  //
  printf("gcc version: %d.%d.%d\n",__GNUC__,__GNUC_MINOR__,__GNUC_PATCHLEVEL__); // https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
  // OpenMP version is diplayed in the console 
  return 0;
}





int PrintInfoAboutPoint(complex double z){

	//unsigned int ix, iy;		// pixel coordinate
	// to do 
	
	double arg;
	unsigned char iColor;
	
	arg = Give_Arg( z, 2500); //   N in wiki
	iColor = ComputeColorOfSAC(z);
	
	printf ("parameter z = ( %.16f ; %.16f ) \n", creal(z), cimag(z));
	printf ("SAC/J : arg = %.16f ; iColor = %d  \n", arg, iColor);
	
	

	return z; 

}


// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************

int setup ()
{

  printf ("setup start\n");
  c = -0.122561166876654  +0.744861766619744*I; // center of  period 3 component = Douady rabbit Julia set   
  lambda = 0.0013 - 0.002*I;
  
  
  
	
  /* 2D array ranges */
  
  iWidth = iHeight;
  iSize = iWidth * iHeight;	// size = number of points in array 
  // iy
  iyMax = iHeight - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
  //ix

  ixMax = iWidth - 1;

  /* 1D array ranges */
  // i1Dsize = i2Dsize; // 1D array with the same size as 2D array
  iMax = iSize - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].

  /* Pixel sizes */
  PixelWidth = (ZxMax - ZxMin) / ixMax;	//  ixMax = (iWidth-1)  step between pixels in world coordinate 
  PixelHeight = (ZyMax - ZyMin) / iyMax;
  ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight);	// it should be 1.000 ...
	
   
	
  
  //ER2 = ER * ER; // for numerical optimisation in iteration
  lnER = log(EscapeRadius); // ln(ER) 
  
   	
  /* create dynamic 1D arrays for colors ( shades of gray ) */
  data = malloc (iSize * sizeof (unsigned char));
  edge = malloc (iSize * sizeof (unsigned char));
  edge2 = malloc (iSize * sizeof (unsigned char));
  	
  if (data == NULL || edge == NULL || edge2 == NULL){
    fprintf (stderr, " Could not allocate memory");
    return 1;
  }

  
 	
  
  BoundaryWidth = 0.5 * iWidth/2000.0; //  measured in % of image width = it will not change when image width in pixels will change 
  distanceMax =   BoundaryWidth*PixelWidth;
  
  
  
  printf (" end of setup \n");
	
  return 0;

} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;




int end(){


  printf (" allways free memory (deallocate )  to avoid memory leaks \n"); // https://en.wiki.x.io/wiki/C_dynamic_memory_allocation
  free (data);
  free(edge);
  free(edge2);
  PrintInfoAboutProgam();
  return 0;

}

// ********************************************************************************************************************
/* -----------------------------------------  main   -------------------------------------------------------------*/
// ********************************************************************************************************************

int main () {
  setup ();
  
  
   
  
  DrawImagerOfDEMJ(data);
  SaveArray2PGMFile (data, iWidth+0.1, "boundary using DEM/J");
  
  
  
  DrawImagerOfBD(data);
  SaveArray2PGMFile (data, iWidth+0.2, "BD/J");
  
  ComputeBoundaries(data, edge);
  SaveArray2PGMFile (edge, iWidth+0.3, "boundaries of BD/J");
  
  DrawImagerOMfBD(data);
  SaveArray2PGMFile (data, iWidth+0.4, "MBD/J");
  
  ComputeBoundaries(data, edge2);
  SaveArray2PGMFile (edge2, iWidth+0.5, "boundaries of MBD/J");
  
  DrawImagerOfLSM(data);
  SaveArray2PGMFile (data, iWidth+0.6, "LSM/J");
  
  ComputeBoundaries(data, edge);
  SaveArray2PGMFile (edge, iWidth+0.7, "boundaries of LSM/J");
  
  CopyBoundaries(edge, data);
  SaveArray2PGMFile (data, iWidth+0.8, "LSM/J + boundaries");
  
  
  //DrawImagerOfUnknown(data);
  //SaveArray2PGMFile (data, iWidth+0.9, "Unknown : boundary and slow dynamics");
  
  
 // DrawImagerOMfSAC(data);
  //SaveArray2PGMFile (data, iWidth+1.0, "SAC/J + DEM/J");
  
  DrawImagerOfBET (data);
  SaveArray2PGMFile (data, iWidth+1.1, "BET");
  
  //PrintInfoAboutPoint(ZxMin+ZyMax*I);
  
  end();

  return 0;
}

text output

 20050.6.pgm saved . Comment = LSM/J 
File 20050.7.pgm saved . Comment = boundaries of LSM/J 
File 20050.8.pgm saved . Comment = LSM/J + boundaries 
 allways free memory (deallocate )  to avoid memory leaks 
Numerical approximation of Julia set for fc(z)= z^2 + c 
parameter c = ( -0.1225611668766540 ; 0.7448617666197440 ) 
Image Width = 2.700000 in world coordinate
PixelWidth = 0.000135 
for DEM/J 
Max distance from exterior to the boundary =  distanceMax = 0.0006750336675146 = 5.012500 pixels
Maximal number of iterations = iterMax = 1000000 
ratio of image  = 1.000000 ; it should be 1.000 ...
gcc version: 7.5.0

ImageMagic src code

 convert 20050.1.pgm -resize 2000x2000 35.png

References

  1. Rabbits, Basilicas, and Other Julia Sets Wrapped in Sierpinski Carpets by Robert L. Devaney With Paul Blanchard, Antonio Garijo, Sebastian Marotta, and Elizabeth D. Russell
  2. wikibooks: DEM/J
  3. fractalforums.org: perturbated-julia-set

Λεζάντες

Δεν ορίστηκε λεζάντα
Perturbated Rabbit Julia set. Made with DEM/J

Ιστορικό αρχείου

Κλικάρετε σε μια ημερομηνία/ώρα για να δείτε το αρχείο όπως εμφανιζόταν εκείνη τη στιγμή.

Ώρα/Ημερομ.ΜικρογραφίαΔιαστάσειςΧρήστηςΣχόλια
τελευταία14:18, 7 Απριλίου 2020Μικρογραφία για την έκδοση της 14:18, 7 Απριλίου 20202.000 × 2.000 (619 KB)Soul windsurferUploaded own work with UploadWizard

Τα παρακάτω λήμματα συνδέουν σε αυτό το αρχείο:

Καθολική χρήση αρχείου

Τα ακόλουθα άλλα wiki χρησιμοποιούν αυτό το αρχείο:

Μεταδεδομένα