Αρχείο:LCMJ rabbit.png
Μέγεθος αυτής της προεπισκόπησης: 600 × 600 εικονοστοιχεία . Άλλες αναλύσεις: 240 × 240 εικονοστοιχεία | 480 × 480 εικονοστοιχεία | 768 × 768 εικονοστοιχεία | 1.024 × 1.024 εικονοστοιχεία | 2.000 × 2.000 εικονοστοιχεία.
Εικόνα σε υψηλότερη ανάλυση (2.000 × 2.000 εικονοστοιχεία, μέγεθος αρχείου: 454 KB, τύπος MIME: image/png)
Αυτό το αρχείο και η περιγραφή του προέρχονται από το Wikimedia Commons. Οι πληροφορίες από την σελίδα περιγραφής του εκεί εμφανίζονται παρακάτω. |
Περιεχόμενα
Σύνοψη
ΠεριγραφήLCMJ rabbit.png |
English: Level Curves of Escape Time ( in the exterior) and for Attraction Time ( in the interior) for c = -0.122561166876654 +0.7448617666197448*I, parameter of function fc(z)=z^2 + c The Julia set boundary itself is not drawn: we see it as the locus of points where the boundaries of level curves are especially close to each other. |
Ημερομηνία | |
Πηγή | Έργο αυτού που το ανεβάζει |
Δημιουργός | Adam majewski |
άλλες εκδόσεις |
|
Αδειοδότηση
Εγώ, ο κάτοχος των πνευματικών δικαιωμάτων αυτού του έργου, το δημοσιεύω δια του παρόντος υπό την εξής άδεια χρήσης:
Το αρχείο διανέμεται υπό την άδεια Creative Commons Αναφορά προέλευσης-Παρόμοια διανομή 4.0 Διεθνής
- Είστε ελεύθερος:
- να μοιραστείτε – να αντιγράψετε, διανέμετε και να μεταδώσετε το έργο
- να διασκευάσετε – να τροποποιήσετε το έργο
- Υπό τις ακόλουθες προϋποθέσεις:
- αναφορά προέλευσης – Θα πρέπει να κάνετε κατάλληλη αναφορά, να παρέχετε σύνδεσμο για την άδεια και να επισημάνετε εάν έγιναν αλλαγές. Μπορείτε να το κάνετε με οποιοδήποτε αιτιολογήσιμο λόγο, χωρίς όμως να εννοείται με οποιονδήποτε τρόπο ότι εγκρίνουν εσάς ή τη χρήση του έργου από εσάς.
- παρόμοια διανομή – Εάν αλλάξετε, τροποποιήσετε ή δημιουργήσετε πάνω στο έργο αυτό, μπορείτε να διανείμετε αυτό που θα προκύψει μόνο υπό τους όρους της ίδιας ή συμβατής άδειας με το πρωτότυπο.
Compare with
-
sobel filter
-
c=-0,123+0.745i
-
c=-0.12256116687665 +0.74486176661974*i; (center of period 3 component) and external rays
-
C-0.12+0.665*i; CPM/J
-
c=-0.11+0.65569999*i ; MIIM
-
c=-0.11+0.65569999*i; mIIM/J
-
c = −0,123 + 0.745i; Quaternion julia set. The "Douady Rabbit" julia set is visible in the cross section
-
Douady rabbit in an exponential family
See also :
- Level curves of Mandelbrot set
- Figure 39 on page 189 from book J Milnor: Dynamics in one complex variable ( 2006 , third edition) . Milnor's figure shows Level Curves of potential ( not Escape Time)
- "Rabbit Ears" Julia set[1]
Σύνοψη
polynomial p(z)=(1+0i)*z^2+(-0.12256116687665399856+0.74486176661974401458i) 1 critical points found cp#0: 0,0 . It's critical orbit is bounded and enters cycle #0 length=3 and it's stability = |multiplier|=4.3811e-15 =attractive cycle = { -0.12256116687665399856,0.74486176661974401458 ; -0.66235897862237291811,0.56227951206230053494 ; 3.0531133177191804862e-16,7.771561172376095783e-16 ; }
c src code
/*
Adam Majewski
adammaj1 aaattt o2 dot pl // o like oxygen not 0 like zero
console program in c programing language
==============================================
Structure of a program or how to analyze the program
============== Image X ========================
DrawImageOfX -> DrawPointOfX -> ComputeColorOfX
first 2 functions are identical for every X
check only last function = ComputeColorOfX
which computes color of one pixel !
==========================================
---------------------------------
indent d.c
default is gnu style
-------------------
c console progam
export OMP_DISPLAY_ENV="TRUE"
gcc d.c -lm -Wall -march=native -fopenmp
time ./a.out > b.txt
gcc d.c -lm -Wall -march=native -fopenmp
time ./a.out
time ./a.out >a.txt
----------------------
*/
#include <stdio.h>
#include <stdlib.h> // malloc
#include <string.h> // strcat
#include <math.h> // M_PI; needs -lm also
#include <complex.h>
#include <omp.h> // OpenMP
/* --------------------------------- global variables and consts ------------------------------------------------------------ */
// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1
//unsigned int ix, iy; // var
static unsigned int ixMin = 0; // Indexes of array starts from 0 not 1
static unsigned int ixMax; //
static unsigned int iWidth; // horizontal dimension of array
static unsigned int iyMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iyMax; //
static unsigned int iHeight = 10000; //
// The size of array has to be a positive constant integer
static unsigned int iSize; // = iWidth*iHeight;
// memmory 1D array
unsigned char *data;
unsigned char *edge;
unsigned char *edge2;
// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax; // = i2Dsize-1 =
// The size of array has to be a positive constant integer
// unsigned int i1Dsize ; // = i2Dsize = (iMax -iMin + 1) = ; 1D array with the same size as 2D array
static const double ZxMin = -2.0; //-0.05;
static const double ZxMax = 2.0; //0.75;
static const double ZyMin = -2.0; //-0.1;
static const double ZyMax = 2.0; //0.7;
static double PixelWidth; // =(ZxMax-ZxMin)/ixMax;
static double PixelHeight; // =(ZyMax-ZyMin)/iyMax;
static double ratio;
// complex numbers of parametr plane
double complex c = -0.122561166876654 +0.7448617666197448*I; // period = 3; // parameter of function fc(z)=z^2 + c
int Period = 3;
static unsigned long int iterMax = 1000000; //iHeight*100;
static double ER = 200.0; // EscapeRadius for bailout test
double ER2;
double AR;
double AR2;
double BoundaryWidth = 3.0;
double distanceMax; //distanceMax = BoundaryWidth*PixelWidth;
/* colors = shades of gray from 0 to 255 */
unsigned char iColorOfExterior = 250;
unsigned char iColorOfInterior = 200;
unsigned char iColorOfInterior1 = 210;
unsigned char iColorOfInterior2 = 180;
unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 30;
/* ------------------------------------------ functions -------------------------------------------------------------*/
//------------------complex numbers -----------------------------------------------------
// from screen to world coordinate ; linear mapping
// uses global cons
double GiveZx ( int ix)
{
return (ZxMin + ix * PixelWidth);
}
// uses globaal cons
double GiveZy (int iy) {
return (ZyMax - iy * PixelHeight);
} // reverse y axis
complex double GiveZ( int ix, int iy){
double Zx = GiveZx(ix);
double Zy = GiveZy(iy);
return Zx + Zy*I;
}
// ****************** DYNAMICS = trap tests ( target sets) ****************************
double cabs2(complex double z){
return creal(z)*creal(z)+cimag(z)*cimag(z);
}
// bailout test
// z escapes when
// abs(z)> ER or cabs2(z)> ER2
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#Boolean_Escape_time
int Escapes(complex double z){
// here target set (trap) is the exterior circle with radsius = ER ( EscapeRadius)
// with ceter = origin z= 0
// on the Riemann sphere it is a circle with point at infinity as a center
if (cabs2(z)>ER2) return 1;
return 0;
}
int Sinks(complex double z){
// here target set (trap) is the interior of the circle with radsius = AR ( AttractingRadius)
// with ceter = origin z= 0 , here z=0 is a point of the superattracting ccycle
if (cabs2(z)< AR2) return 1;
return 0;
}
/* ----------- array functions = drawing -------------- */
/* gives position of 2D point (ix,iy) in 1D array ; uses also global variable iWidth */
unsigned int Give_i (unsigned int ix, unsigned int iy)
{
return ix + iy * iWidth;
}
// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************
// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
unsigned int i; /* index of 1D array */
/* sobel filter */
unsigned char G, Gh, Gv;
// boundaries are in D array ( global var )
// clear D array
memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);
// printf(" find boundaries in S array using Sobel filter\n");
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
for(iY=1;iY<iyMax-1;++iY){
for(iX=1;iX<ixMax-1;++iX){
Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
G = sqrt(Gh*Gh + Gv*Gv);
i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
if (G==0) {D[i]=255;} /* background */
else {D[i]=0;} /* boundary */
}
}
return 0;
}
// copy from Source to Destination
int CopyBoundaries(unsigned char S[], unsigned char D[])
{
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
unsigned int i; /* index of 1D array */
//printf("copy boundaries from S array to D array \n");
for(iY=1;iY<iyMax-1;++iY)
for(iX=1;iX<ixMax-1;++iX)
{i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
return 0;
}
// ***************************************************************************************************************************
// ************************** DEM/J*****************************************
// ****************************************************************************************************************************
unsigned char ComputeColorOfDEMJ(complex double z){
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#DEM.2FJ
int nMax = iterMax;
complex double dz = 1.0; // is first derivative with respect to z.
double distance;
double cabsz;
int n;
for (n=0; n < nMax; n++){ //forward iteration
cabsz = cabs(z);
if (cabsz > 1e60 || cabs(dz)> 1e60) break; // big values
if (cabsz< PixelWidth) return iColorOfInterior; // falls into finite attractor = interior
dz = 2.0*z * dz;
z = z*z +c ; /* forward iteration : complex quadratic polynomial */
}
distance = 2.0 * cabsz* log(cabsz)/ cabs(dz);
if (distance <distanceMax) return iColorOfBoundary; // distanceMax = BoundaryWidth*PixelWidth;
// else
return iColorOfExterior;
}
// plots raster point (ix,iy)
int DrawPointOfDEMJ (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfDEMJ(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOfDEMJ (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfDEMJ(A, ix, iy); //
}
return 0;
}
// ***************************************************************************************************************************
// ************************** Unknown: boundary and slow dynamics *****************************************
// ****************************************************************************************************************************
unsigned char ComputeColorOfUnknown(complex double z){
int nMax = 20; // very low value
double cabsz;
int n;
for (n=0; n < nMax; n++){ //forward iteration
cabsz = cabs(z);
if (cabsz > 10000000000*ER ) return iColorOfExterior; // big values
if (cabsz < (PixelWidth/100)) return iColorOfInterior; // falls into finite attractor = interior
z = z*z +c ; /* forward iteration : complex quadratic polynomial */
}
//printf("found \n");
return iColorOfUnknown;
}
// plots raster point (ix,iy)
int DrawPointOfUnknown (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfUnknown(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOfUnknown (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
//printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfUnknown(A, ix, iy); //
}
return 0;
}
// ***************************************************************************************************************************
// ************************** LSM/J*****************************************
// ****************************************************************************************************************************
unsigned char ComputeColorOfLSM(complex double z){
int nMax = 255;
double cabsz2;
unsigned char iColor;
int n;
for (n=0; n < nMax; n++){ //forward iteration
cabsz2 = cabs2(z);
if (cabsz2>ER2) break; // esacping
if (cabsz2 <AR2) break; // fails into finite attractor = interior
z = z*z +c ; /* forward iteration : complex quadratic polynomial */
}
iColor = 255 - 255.0 * ((double) n)/20; // nMax or lower walues in denominator
return iColor;
}
// plots raster point (ix,iy)
int DrawPointOfLSM (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfLSM(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOfLSM (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfLSM(A, ix, iy); //
}
return 0;
}
// ***************************************************************************************************************************
// ************************** binary decomposition BD/J*****************************************
// ****************************************************************************************************************************
unsigned char ComputeColorOfBD(complex double z){
int nMax = 255;
double cabsz;
unsigned char iColor;
int n;
for (n=0; n < nMax; n++){ //forward iteration
cabsz = cabs(z);
if (cabsz > ER) break; // esacping
if (cabsz< PixelWidth) break; // fails into finite attractor = interior
z = z*z +c ; /* forward iteration : complex quadratic polynomial */
}
if (creal(z)>0.0)
iColor = 255;
else iColor = 0;
return iColor;
}
// plots raster point (ix,iy)
int DrawPointOfBD (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfBD(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOfBD (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfBD(A, ix, iy); //
}
return 0;
}
// ***************************************************************************************************************************
// ************************** modified binary decomposition BD/J*****************************************
// ****************************************************************************************************************************
unsigned char ComputeColorOfMBD(complex double z){
// const number of iterations
int nMax = 7;
//double cabsz;
unsigned char iColor;
int n;
for (n=0; n < nMax; n++){ //forward iteration
//cabsz = cabs(z);
//if (cabsz > ER) break; // esacping
//if (cabsz< PixelWidth) break; // falls into finite attractor = interior
z = z*z +c ; /* forward iteration : complex quadratic polynomial */
}
if (cabs(z) > 2.0)
{ // exterior
if (creal(z)>0.0)
iColor = 255;
else iColor = 0;
}
else iColor = iColorOfInterior;
return iColor;
}
// plots raster point (ix,iy)
int DrawPointOfMBD (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfMBD(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOMfBD (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfMBD(A, ix, iy); //
}
return 0;
}
// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************
int SaveArray2PGMFile( unsigned char A[], double k, char* comment )
{
FILE * fp;
const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ; it is 8 bit color file */
char name [100]; /* name of file */
snprintf(name, sizeof name, "%.1f", k); /* */
char *filename =strcat(name,".pgm");
// save image to the pgm file
fp= fopen(filename,"wb"); // create new file,give it a name and open it in binary mode
fprintf(fp,"P5\n # %s\n %u %u\n %u\n", comment, iWidth, iHeight, MaxColorComponentValue); // write header to the file
fwrite(A,iSize,1,fp); // write array with image data bytes to the file in one step
fclose(fp);
// info
printf("File %s saved ", filename);
if (comment == NULL || strlen(comment) ==0)
printf("\n");
else printf (". Comment = %s \n", comment);
return 0;
}
int PrintInfoAboutProgam()
{
// display info messages
printf ("Numerical approximation of Julia set for fc(z)= z^2 + c \n");
//printf ("iPeriodParent = %d \n", iPeriodParent);
//printf ("iPeriodOfChild = %d \n", iPeriodChild);
printf ("parameter c = ( %.16f ; %.16f ) \n", creal(c), cimag(c));
printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
printf ("PixelWidth = %f \n", PixelWidth);
if ( distanceMax<0.0 || distanceMax > ER ) printf("bad distanceMax\n");
printf("distanceMax = %.16f\n", distanceMax);
// image corners in world coordinate
// center and radius
// center and zoom
// GradientRepetition
printf ("Maximal number of iterations = iterMax = %ld \n", iterMax);
printf ("ratio of image = %f ; it should be 1.000 ...\n", ratio);
//
printf("gcc version: %d.%d.%d\n",__GNUC__,__GNUC_MINOR__,__GNUC_PATCHLEVEL__); // https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
// OpenMP version is diplayed in the console
return 0;
}
int PrintInfoAboutPoint(complex double z){
//unsigned int ix, iy; // pixel coordinate
// to do
return z;
}
// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;; setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************
int setup ()
{
printf ("setup start\n");
/* 2D array ranges */
iWidth = iHeight;
iSize = iWidth * iHeight; // size = number of points in array
// iy
iyMax = iHeight - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
//ix
ixMax = iWidth - 1;
/* 1D array ranges */
// i1Dsize = i2Dsize; // 1D array with the same size as 2D array
iMax = iSize - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
/* Pixel sizes */
PixelWidth = (ZxMax - ZxMin) / ixMax; // ixMax = (iWidth-1) step between pixels in world coordinate
PixelHeight = (ZyMax - ZyMin) / iyMax;
ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((float) iWidth / (float) iHeight); // it should be 1.000 ...
//ER2 = ER * ER; // for numerical optimisation in iteration
/* create dynamic 1D arrays for colors ( shades of gray ) */
data = malloc (iSize * sizeof (unsigned char));
edge = malloc (iSize * sizeof (unsigned char));
edge2 = malloc (iSize * sizeof (unsigned char));
if (data == NULL || edge == NULL || edge2 == NULL){
fprintf (stderr, " Could not allocate memory");
return 1;
}
ER2 = ER*ER;
AR = PixelWidth;
AR2 = AR*AR;
distanceMax = BoundaryWidth*PixelWidth;
printf (" end of setup \n");
return 0;
} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
int end(){
printf (" allways free memory (deallocate ) to avoid memory leaks \n"); // https://en.wiki.x.io/wiki/C_dynamic_memory_allocation
free (data);
free(edge);
free(edge2);
PrintInfoAboutProgam();
return 0;
}
// ********************************************************************************************************************
/* ----------------------------------------- main -------------------------------------------------------------*/
// ********************************************************************************************************************
int main () {
setup ();
// ******************************** DEM/J **********************************************************
DrawImagerOfDEMJ(data);
SaveArray2PGMFile (data, iWidth+0.1, "boundary using DEM/J");
DrawImagerOfBD(data);
SaveArray2PGMFile (data, iWidth+0.2, "BD/J");
ComputeBoundaries(data, edge);
SaveArray2PGMFile (edge, iWidth+0.3, "boundaries of BD/J");
DrawImagerOMfBD(data);
SaveArray2PGMFile (data, iWidth+0.4, "MBD/J");
ComputeBoundaries(data, edge2);
SaveArray2PGMFile (edge2, iWidth+0.5, "boundaries of MBD/J");
DrawImagerOfLSM(data);
SaveArray2PGMFile (data, iWidth+0.6, "LSM/J");
ComputeBoundaries(data, edge);
SaveArray2PGMFile (edge, iWidth+0.7, "boundaries of LSM/J");
CopyBoundaries(edge, edge2);
SaveArray2PGMFile (edge2, iWidth+0.8, "boundaries of LSM/J and MBD");
DrawImagerOfUnknown(data);
SaveArray2PGMFile (data, iWidth+0.9, "Unknown : boundary and slow dynamics");
end();
return 0;
}
Postprocessing
convert 10000.7.pgm -resize 2000x2000 7.png
References
Items portrayed in this file
απεικονίζει
18 Ιουλίου 2020
image/png
Ιστορικό αρχείου
Κλικάρετε σε μια ημερομηνία/ώρα για να δείτε το αρχείο όπως εμφανιζόταν εκείνη τη στιγμή.
Ώρα/Ημερομ. | Μικρογραφία | Διαστάσεις | Χρήστης | Σχόλια | |
---|---|---|---|---|---|
τελευταία | 10:38, 18 Ιουλίου 2020 | 2.000 × 2.000 (454 KB) | Soul windsurfer | Uploaded own work with UploadWizard |
Συνδέσεις αρχείου
Τα παρακάτω λήμματα συνδέουν σε αυτό το αρχείο:
Καθολική χρήση αρχείου
Τα ακόλουθα άλλα wiki χρησιμοποιούν αυτό το αρχείο:
- Χρήση σε en.wiki.x.io
- Χρήση σε en.wikibooks.org
- Χρήση σε es.wiki.x.io
Μεταδεδομένα
Αυτό το αρχείο περιέχει πρόσθετες πληροφορίες, πιθανόν από την ψηφιακή φωτογραφική μηχανή ή το scanner που χρησιμοποιήθηκε για την δημιουργία ή την ψηφιοποίησή της. Αν το αρχείο έχει τροποποιηθεί από την αρχική του κατάσταση, ορισμένες λεπτομέρειες πιθανόν να μην αντιστοιχούν πλήρως στην τροποποιημένη εικόνα.
Σχόλιο αρχείου PNG |
|
---|---|
Ημερομηνία και ώρα τελευταίας επεξεργασίας αρχείου | 14:32, 18 Ιουλίου 2020 |
Ανακτήθηκε από "https://el.wiki.x.io/wiki/Αρχείο:LCMJ_rabbit.png"