Εικόνα σε υψηλότερη ανάλυση (2.000 × 2.000 εικονοστοιχεία, μέγεθος αρχείου: 454 KB, τύπος MIME: image/png)

Σύνοψη

Περιγραφή
English: Level Curves of Escape Time ( in the exterior) and for Attraction Time ( in the interior) for c = -0.122561166876654 +0.7448617666197448*I, parameter of function fc(z)=z^2 + c The Julia set boundary itself is not drawn: we see it as the locus of points where the boundaries of level curves are especially close to each other.
Ημερομηνία
Πηγή Έργο αυτού που το ανεβάζει
Δημιουργός Adam majewski
άλλες εκδόσεις

Αδειοδότηση

Εγώ, ο κάτοχος των πνευματικών δικαιωμάτων αυτού του έργου, το δημοσιεύω δια του παρόντος υπό την εξής άδεια χρήσης:
w:el:Creative Commons
αναφορά προέλευσης παρόμοια διανομή
Είστε ελεύθερος:
  • να μοιραστείτε – να αντιγράψετε, διανέμετε και να μεταδώσετε το έργο
  • να διασκευάσετε – να τροποποιήσετε το έργο
Υπό τις ακόλουθες προϋποθέσεις:
  • αναφορά προέλευσης – Θα πρέπει να κάνετε κατάλληλη αναφορά, να παρέχετε σύνδεσμο για την άδεια και να επισημάνετε εάν έγιναν αλλαγές. Μπορείτε να το κάνετε με οποιοδήποτε αιτιολογήσιμο λόγο, χωρίς όμως να εννοείται με οποιονδήποτε τρόπο ότι εγκρίνουν εσάς ή τη χρήση του έργου από εσάς.
  • παρόμοια διανομή – Εάν αλλάξετε, τροποποιήσετε ή δημιουργήσετε πάνω στο έργο αυτό, μπορείτε να διανείμετε αυτό που θα προκύψει μόνο υπό τους όρους της ίδιας ή συμβατής άδειας με το πρωτότυπο.

Compare with

See also :

  • Level curves of Mandelbrot set
  • Figure 39 on page 189 from book J Milnor: Dynamics in one complex variable ( 2006 , third edition) . Milnor's figure shows Level Curves of potential ( not Escape Time)
  • "Rabbit Ears" Julia set[1]

Σύνοψη


polynomial p(z)=(1+0i)*z^2+(-0.12256116687665399856+0.74486176661974401458i)

1 critical points found

	cp#0: 0,0 . It's critical orbit is bounded and enters cycle #0 length=3 and it's stability = |multiplier|=4.3811e-15 =attractive 
cycle = {
-0.12256116687665399856,0.74486176661974401458 ; -0.66235897862237291811,0.56227951206230053494 ; 3.0531133177191804862e-16,7.771561172376095783e-16 ; }

c src code

/*

  Adam Majewski
  adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero 
  
  
  console program in c programing language 
  
  ==============================================
  
  
  Structure of a program or how to analyze the program 
  
  
  ============== Image X ========================
  
  DrawImageOfX -> DrawPointOfX -> ComputeColorOfX 
  
  first 2 functions are identical for every X
  check only last function =  ComputeColorOfX
  which computes color of one pixel !
  
  

   
  ==========================================

  
  ---------------------------------
  indent d.c 
  default is gnu style 
  -------------------



  c console progam 
  
	export  OMP_DISPLAY_ENV="TRUE"	
  	gcc d.c -lm -Wall -march=native -fopenmp
  	time ./a.out > b.txt


  gcc d.c -lm -Wall -march=native -fopenmp


  time ./a.out

  time ./a.out >a.txt

  ----------------------

*/

#include <stdio.h>
#include <stdlib.h>		// malloc
#include <string.h>		// strcat
#include <math.h>		// M_PI; needs -lm also
#include <complex.h>
#include <omp.h>	// OpenMP

/* --------------------------------- global variables and consts ------------------------------------------------------------ */



// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1 
//unsigned int ix, iy; // var
static unsigned int ixMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int ixMax;	//
static unsigned int iWidth;	// horizontal dimension of array

static unsigned int iyMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int iyMax;	//

static unsigned int iHeight = 10000;	//  
// The size of array has to be a positive constant integer 
static unsigned int iSize;	// = iWidth*iHeight; 

// memmory 1D array 
unsigned char *data;
unsigned char *edge;
unsigned char *edge2;

// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax;	// = i2Dsize-1  = 
// The size of array has to be a positive constant integer 
// unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array


static const double ZxMin = -2.0;	//-0.05;
static const double ZxMax =  2.0;	//0.75;
static const double ZyMin = -2.0;	//-0.1;
static const double ZyMax =  2.0;	//0.7;
static double PixelWidth;	// =(ZxMax-ZxMin)/ixMax;
static double PixelHeight;	// =(ZyMax-ZyMin)/iyMax;
static double ratio;


// complex numbers of parametr plane 
double complex c = -0.122561166876654  +0.7448617666197448*I; //    period = 3;		// parameter of function fc(z)=z^2 + c

int Period = 3;


static unsigned long int iterMax = 1000000;	//iHeight*100;

static double ER = 200.0;		// EscapeRadius for bailout test 
double ER2;
double AR; 
double AR2;

double BoundaryWidth = 3.0;
double distanceMax; //distanceMax = BoundaryWidth*PixelWidth;




/* colors = shades of gray from 0 to 255 */
unsigned char iColorOfExterior = 250;
unsigned char iColorOfInterior = 200;
unsigned char iColorOfInterior1 = 210;
unsigned char iColorOfInterior2 = 180;
unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 30;





/* ------------------------------------------ functions -------------------------------------------------------------*/





//------------------complex numbers -----------------------------------------------------





// from screen to world coordinate ; linear mapping
// uses global cons
double GiveZx ( int ix)
{
  return (ZxMin + ix * PixelWidth);
}

// uses globaal cons
double GiveZy (int iy) {
  return (ZyMax - iy * PixelHeight);
}				// reverse y axis


complex double GiveZ( int ix, int iy){
  double Zx = GiveZx(ix);
  double Zy = GiveZy(iy);
	
  return Zx + Zy*I;
	
	


}




// ****************** DYNAMICS = trap tests ( target sets) ****************************

double cabs2(complex double z){

	return creal(z)*creal(z)+cimag(z)*cimag(z);


}



// bailout test
// z escapes when 
// abs(z)> ER or cabs2(z)> ER2 
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#Boolean_Escape_time

int Escapes(complex double z){
 // here target set (trap) is the exterior  circle with radsius = ER ( EscapeRadius) 
  // with ceter = origin z= 0
  // on the Riemann sphere it is a circle with point at infinity as a center  
   
  if (cabs2(z)>ER2) return 1;
  return 0;
}


int  Sinks(complex double z){
 // here target set (trap) is the interior of the circle with radsius = AR ( AttractingRadius) 
  // with ceter = origin z= 0 , here z=0 is a point of the superattracting ccycle
    
   
  if (cabs2(z)< AR2) return 1;
  return 0;
}








/* -----------  array functions = drawing -------------- */

/* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */
unsigned int Give_i (unsigned int ix, unsigned int iy)
{
  return ix + iy * iWidth;
}


// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************

// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
  /* sobel filter */
  unsigned char G, Gh, Gv; 
  // boundaries are in D  array ( global var )
 
  // clear D array
  memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);
 
  // printf(" find boundaries in S array using  Sobel filter\n");   
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
  for(iY=1;iY<iyMax-1;++iY){ 
    for(iX=1;iX<ixMax-1;++iX){ 
      Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
      Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
      G = sqrt(Gh*Gh + Gv*Gv);
      i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
      if (G==0) {D[i]=255;} /* background */
      else {D[i]=0;}  /* boundary */
    }
  }
 
   
 
  return 0;
}



// copy from Source to Destination
int CopyBoundaries(unsigned char S[],  unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
 
 
  //printf("copy boundaries from S array to D array \n");
  for(iY=1;iY<iyMax-1;++iY)
    for(iX=1;iX<ixMax-1;++iX)
      {i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
 
 
 
  return 0;
}





// ***************************************************************************************************************************
// ************************** DEM/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfDEMJ(complex double z){
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#DEM.2FJ


  
  int nMax = iterMax;
  complex double dz = 1.0; //  is first derivative with respect to z.
  double distance;
  double cabsz;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	cabsz = cabs(z);
    	if (cabsz > 1e60 || cabs(dz)> 1e60) break; // big values 
    	if (cabsz< PixelWidth) return iColorOfInterior; // falls into finite attractor = interior
  			
    dz = 2.0*z * dz; 
    z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  
  distance = 2.0 * cabsz* log(cabsz)/ cabs(dz);
  if (distance <distanceMax) return iColorOfBoundary; // distanceMax = BoundaryWidth*PixelWidth;
  // else
  
  return iColorOfExterior;

 
}



// plots raster point (ix,iy) 
int DrawPointOfDEMJ (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfDEMJ(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfDEMJ (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf (" %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfDEMJ(A, ix, iy);	//  
  }

  return 0;
}




// ***************************************************************************************************************************
// ************************** Unknown: boundary and slow dynamics *****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfUnknown(complex double z){



  
  int nMax = 20; // very low value
  
  double cabsz;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	cabsz = cabs(z);
    	if (cabsz > 10000000000*ER )  return iColorOfExterior; // big values
    	if (cabsz < (PixelWidth/100)) return iColorOfInterior; // falls into finite attractor = interior
  			
    
    z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  
  
  
  //printf("found \n");
  return iColorOfUnknown;

 
}



// plots raster point (ix,iy) 
int DrawPointOfUnknown (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfUnknown(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfUnknown (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		//printf (" %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfUnknown(A, ix, iy);	//  
  }

  return 0;
}





// ***************************************************************************************************************************
// ************************** LSM/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfLSM(complex double z){

 int nMax = 255;
  double cabsz2;
  unsigned char iColor;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	cabsz2 = cabs2(z);
    	if (cabsz2>ER2) break; // esacping
    	if (cabsz2 <AR2) break; // fails into finite attractor = interior
  			
   
     	z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  
  iColor = 255 - 255.0 * ((double) n)/20; // nMax or lower walues in denominator
  
  
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfLSM (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfLSM(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfLSM (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf (" %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfLSM(A, ix, iy);	//  
  }

  return 0;
}




// ***************************************************************************************************************************
// ************************** binary decomposition BD/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfBD(complex double z){

 int nMax = 255;
  double cabsz;
  unsigned char iColor;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	cabsz = cabs(z);
    	if (cabsz > ER) break; // esacping
    	if (cabsz< PixelWidth) break; // fails into finite attractor = interior
  			
   
     	z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  if (creal(z)>0.0) 
  	iColor = 255; 
  	else iColor = 0;
  
  
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfBD (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfBD(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfBD (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf (" %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfBD(A, ix, iy);	//  
  }

  return 0;
}





// ***************************************************************************************************************************
// ************************** modified binary decomposition BD/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfMBD(complex double z){
// const number of iterations
 int nMax = 7;
  //double cabsz;
  unsigned char iColor;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	//cabsz = cabs(z);
    	//if (cabsz > ER) break; // esacping
    	//if (cabsz< PixelWidth) break; // falls into finite attractor = interior
  			
   
     	z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  if (cabs(z) > 2.0)
  	{ // exterior
  		if (creal(z)>0.0) 
  			iColor = 255; 
  			else iColor = 0;
  	}
  	else iColor = iColorOfInterior;
  	
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfMBD (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfMBD(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOMfBD (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf (" %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfMBD(A, ix, iy);	//  
  }

  return 0;
}












// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************

int SaveArray2PGMFile( unsigned char A[], double k, char* comment )
{
  
  FILE * fp;
  const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ;  it is 8 bit color file */
  char name [100]; /* name of file */
  snprintf(name, sizeof name, "%.1f", k); /*  */
  char *filename =strcat(name,".pgm");
  
  
  
  // save image to the pgm file 
  fp= fopen(filename,"wb"); // create new file,give it a name and open it in binary mode 
  fprintf(fp,"P5\n # %s\n %u %u\n %u\n", comment, iWidth, iHeight, MaxColorComponentValue);  // write header to the file
  fwrite(A,iSize,1,fp);  // write array with image data bytes to the file in one step 
  fclose(fp); 
  
  // info 
  printf("File %s saved ", filename);
  if (comment == NULL || strlen(comment) ==0)  
    printf("\n");
  else printf (". Comment = %s \n", comment); 

  return 0;
}







int PrintInfoAboutProgam()
{

  
  // display info messages
  printf ("Numerical approximation of Julia set for fc(z)= z^2 + c \n");
  //printf ("iPeriodParent = %d \n", iPeriodParent);
  //printf ("iPeriodOfChild  = %d \n", iPeriodChild);
  printf ("parameter c = ( %.16f ; %.16f ) \n", creal(c), cimag(c));
  
  printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
  printf ("PixelWidth = %f \n", PixelWidth);
  
  if ( distanceMax<0.0 || distanceMax > ER ) printf("bad distanceMax\n");
	printf("distanceMax = %.16f\n",  distanceMax); 
  
  // image corners in world coordinate
  // center and radius
  // center and zoom
  // GradientRepetition
  printf ("Maximal number of iterations = iterMax = %ld \n", iterMax);
  printf ("ratio of image  = %f ; it should be 1.000 ...\n", ratio);
  //
  printf("gcc version: %d.%d.%d\n",__GNUC__,__GNUC_MINOR__,__GNUC_PATCHLEVEL__); // https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
  // OpenMP version is diplayed in the console 
  return 0;
}





int PrintInfoAboutPoint(complex double z){

	//unsigned int ix, iy;		// pixel coordinate
	// to do 

	return z; 

}


// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************

int setup ()
{

  printf ("setup start\n");
     
  
  
  
  
	
  /* 2D array ranges */
  
  iWidth = iHeight;
  iSize = iWidth * iHeight;	// size = number of points in array 
  // iy
  iyMax = iHeight - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
  //ix

  ixMax = iWidth - 1;

  /* 1D array ranges */
  // i1Dsize = i2Dsize; // 1D array with the same size as 2D array
  iMax = iSize - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].

  /* Pixel sizes */
  PixelWidth = (ZxMax - ZxMin) / ixMax;	//  ixMax = (iWidth-1)  step between pixels in world coordinate 
  PixelHeight = (ZyMax - ZyMin) / iyMax;
  ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((float) iWidth / (float) iHeight);	// it should be 1.000 ...
	
   
	
  
  //ER2 = ER * ER; // for numerical optimisation in iteration
  
  
   	
  /* create dynamic 1D arrays for colors ( shades of gray ) */
  data = malloc (iSize * sizeof (unsigned char));
  edge = malloc (iSize * sizeof (unsigned char));
  edge2 = malloc (iSize * sizeof (unsigned char));
  	
  if (data == NULL || edge == NULL || edge2 == NULL){
    fprintf (stderr, " Could not allocate memory");
    return 1;
  }

  
  ER2 = ER*ER;
  AR = PixelWidth;
  AR2 = AR*AR;	
  
  
  distanceMax = BoundaryWidth*PixelWidth;
  
  
  
  printf (" end of setup \n");
	
  return 0;

} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;




int end(){


  printf (" allways free memory (deallocate )  to avoid memory leaks \n"); // https://en.wiki.x.io/wiki/C_dynamic_memory_allocation
  free (data);
  free(edge);
  free(edge2);
  PrintInfoAboutProgam();
  return 0;

}

// ********************************************************************************************************************
/* -----------------------------------------  main   -------------------------------------------------------------*/
// ********************************************************************************************************************

int main () {
  setup ();
  
  
  // ******************************** DEM/J **********************************************************
  DrawImagerOfDEMJ(data);
  SaveArray2PGMFile (data, iWidth+0.1, "boundary using DEM/J");
  
  
  
  DrawImagerOfBD(data);
  SaveArray2PGMFile (data, iWidth+0.2, "BD/J");
  
  ComputeBoundaries(data, edge);
  SaveArray2PGMFile (edge, iWidth+0.3, "boundaries of BD/J");
  
  DrawImagerOMfBD(data);
  SaveArray2PGMFile (data, iWidth+0.4, "MBD/J");
  
  ComputeBoundaries(data, edge2);
  SaveArray2PGMFile (edge2, iWidth+0.5, "boundaries of MBD/J");
  
  DrawImagerOfLSM(data);
  SaveArray2PGMFile (data, iWidth+0.6, "LSM/J");
  
  ComputeBoundaries(data, edge);
  SaveArray2PGMFile (edge, iWidth+0.7, "boundaries of LSM/J");
  
  CopyBoundaries(edge, edge2);
  SaveArray2PGMFile (edge2, iWidth+0.8, "boundaries of LSM/J and MBD");
  
  
  DrawImagerOfUnknown(data);
  SaveArray2PGMFile (data, iWidth+0.9, "Unknown : boundary and slow dynamics");
  
  
  end();

  return 0;
}

Postprocessing

 convert 10000.7.pgm -resize 2000x2000 7.png 

References

  1. Keenan Crane - Ray Tracing Quaternion Julia Sets on the GPU

Λεζάντες

Δεν ορίστηκε λεζάντα
Level Curves of Escape Time ( in the exterior) and for Attraction Time ( in the interior) for c = -0.122561166876654 +0.7448617666197448*I, function fc(z)=z^2 + c

Ιστορικό αρχείου

Κλικάρετε σε μια ημερομηνία/ώρα για να δείτε το αρχείο όπως εμφανιζόταν εκείνη τη στιγμή.

Ώρα/Ημερομ.ΜικρογραφίαΔιαστάσειςΧρήστηςΣχόλια
τελευταία10:38, 18 Ιουλίου 2020Μικρογραφία για την έκδοση της 10:38, 18 Ιουλίου 20202.000 × 2.000 (454 KB)Soul windsurferUploaded own work with UploadWizard

Τα παρακάτω λήμματα συνδέουν σε αυτό το αρχείο:

Καθολική χρήση αρχείου

Τα ακόλουθα άλλα wiki χρησιμοποιούν αυτό το αρχείο:

Μεταδεδομένα